IMPACTO DE LOS FACTORES TÉCNICOS EN LA CALIDAD DEL DESARROLLO DE LOS SISTEMAS DE INFORMACIÓN PARA LA TOMA DE DECISIONES Y USO POR EL USUARIO

Contenido principal del artículo

José Melchor Medina Quintero
Julián Chaparro Peláez

Resumen

Esta investigación analiza el impacto de algunos factores técnicos (habilidades del programador, fuente de datos e infraestructura tecnológica) en la calidad del desarrollo y la operación de los sistemas de información para la toma de decisiones y el uso del sistema por parte del usuario, con base en un modelo de investigación diseñado para este fin. El estudio empírico se lleva a cabo en seis instituciones de educación superior del noreste de México (94 cuestionarios) mediante una herramienta estadística conocida como Mínimos Cuadrados Parciales. Los resultados muestran que las habilidades del programador y la calidad de la información son los elementos con mayor impacto, principalmente en la toma de decisiones (60% de la varianza explicada).

Detalles del artículo

Sección
Publicados
Biografía del autor/a

José Melchor Medina Quintero, Universidad Autónoma de Tamaulipas, México

Universidad Autónoma de Tamaulipas
U.A.M. de Comercio y Administración - Victoria

Julián Chaparro Peláez, Universidad Politécnica de Madrid, España

Universidad Politécnica de Madrid
E.T.S. de Ingenieros de Telecomunicació

Citas

Álvarez, R. (2001). It Was a Great System: Face-work and the Discursive Construction of Technology During Information System Development. Information Technology & People (14:4), pp. 385-405.

Auer, T; M. Rouhonen (1997). Analysing the Quality of IS Use and Management in the Organizational Context: Experiences from Two Cases. Information Resources Management Journal (10:3), pp. 18-27.

Azari, R.; J.B. Pick (2005). Technology and Society: Socioeconomic Influences on Technological Sectors for United Sates Countries. International Journal of Information Management (25:1), pp. 21-37.

Bajaj, A.; S.R. Nidumolu (1998). A Feedback Model to Understand Information System Usage. Information & Management (33:4),

pp. 213-224.

Ballou, D.; R. Wang; H. Pazer; G.K. Tayi (1998). Modeling Information Manufacturing Systems to Determine Information Product Quality. Management Science (44:4), pp. 462-484.

Balsamo, S.; A. Di Marco; P Inverardi; M. Simeón (2004). Model-Based Performance Prediction in Software Development: A Survey. IEEE Transactions on Software Engineering (30:5), pp. 295-310.

Barclay, D.; C. Higgins; R. Thompson (1995). The Partial Least Squares (PLS) Approach to Causal Modeling: Personal Computer Adoption and Use as an Illustration. Technology Studies, Special Issue on Research Methodology (2:2), pp. 285-309.

Bennatan, E.M. (2000). On Time Within Budget. Software Management Practices and Techniques, John Wiley and Sons Inc. Editorial. Third Edition, U.S.A.

Boon, O.; C. Wilkin; B. Corbitt (2003). Towards a Broader Bases IS Success Model

- Integrating Critical Success Factors and the DeLone and McLean’s IS Success Model. SWP 2003/10, Faculty of Business and Law. University Deakin. Australia.

Brynjolfsson, E.; L. Hitt (1995). The Productive Keep Producing - Successful Companies Support Good Business Plans with Bight Information Technologies. Information Week. Pág. 18. Cepeda, C.G.; J.L. Roldán (2004). Aplicando en la Práctica la Técnica PLS en la Administración de Empresas. Presentado en ACEDE 2004. Murcia, España, Septiembre 19-21.

Chin, W.W. (1998). Issues and Opinion on Structural Equation Modeling. MIS Quarterly (22:1), pp. vii-xvi

Chow, T.S. (1985). Software Ouality: Definitions, Measurements and Applications. Tutorial on Software Ouality Assurance: A Practical Approach. Silver Spring, MD: IEEE Computer Society Press, pp. 13-20.

Connolly, T; B. Thorn (1987). Predecisional Information Acquisition: Effects of Task Variables on Suboptimal Search Strategies. Organizational Behavior and Human Decision Processes (39:3), pp. 397-417.

Cornelia, A. (1994). Los Recursos de Información. Ventaja Competitiva de las Empresas, McGraw- Hill Editorial, Madrid, España.

Dalcher, D. (2004). Stories and Histories: Case Study Research (and Beyond) in Information Systems Failures. En: Michael E. Whitman and Amy B. Woszczynski (Eds.), The Handbook of Information Systems Research, Idea Group Publishing. Hershey, PA. U.S.A., pp. 305-322.

Davis, F.D. (1989). Perceived Usefulness, Perceived Ease of Use, and User Acceptance of Information Technology. MIS Quarterly (13:3), pp. 319-340.

Hamill, J.T.; R.F. Deckro; J.M. Kloeber Jr. (2005). Evaluating Information Assurance Strategies. Decision Support Systems (39:3), pp. 463-484. Harter,

D.E.; M.S. Krishnan; S.A. Slaughter (2000). Effects of Process Maturity on Quality, Cycle Time, and Effort in Software Product Development. Management Science (46:4), pp. 451-466.

Hartwick, J.; H. Barki (1994). Explaining the Pole of User Participation in Information Systems Use. Management Science (40:4), pp. 440-465.

Herndon, M.A.; R. Moore; M. Phillips; J. Walker and L. West (2003). Interpreting Capability Maturity Model Integration (CMMI) for Service Organizations - a Systems Engineering and Integration Services Example. Software Engineering Process Management. Software Engineering Institute.

Huber, G.P.; R.R. McDaniel (1989). The Decision- Making Paradigm of Organizational Design. Management Science (32:5), pp. 572-589.

Hull, M.E.C.; PS. Taylor; J.R.P. Hanna; R.J. Millar (2002). Software Development Processes - An Assessment. Information and Software Technology (44:1), pp. 1-12.

Igbaria, M.; T. Guimaraes; G.B. Davis (1995). Testing the Determinants of Microcomputer Usage via a Structural Equation Model. Journal of Management Information Systems (11:4), pp. 87-114.

Ives, B.; M.H. Olson; J.J. Baroudi (1983). The Measurement of User Information Satisfaction. Communications of the ACM (26:10), pp. 785-793.

Jiang, J.J.; G. Klein; J. Roan; J.T.M. Un (2001).

IS Service Performance: Self-Perceptions and User Perceptions. Information & Management (38:8), pp. 499-506.

Juran, J.M.; A.B. Godfrey (1999). Juran’s Quality Handbook, 5th Edition. McGraw Hill, New York, U.S.A.

Kahn, B.K.; D.M. Strong; R.Y. Wang (2002). Information Quality Benchmarks: Product and Service Performance. Communications of the ACM (45:4), pp. 184-192.

Straub, D.; C. Carlson (1989). Validating Instrument in MIS Research. MIS Quarterly (13:2), pp. 147-169.

Straub, D.; M. Limayem; E. Karahanna-Evaristo (1995). Measuring System Usage: Implications for IS Theory Testing. Management Science (41:8), pp. 1328-1342.

Teng, J.T.C.; K.J. Calhoun (1996). Organizational Computing as a Facilitator for Operational and Managerial Decision Making: An Exploratory Study of Managers’ Perceptions. Decision Sciences (27:4), pp. 673-710.

Tetzeli, R. (1994). Surviving Information Overload. Fortune. July 11, pp. 60-64.

Tzu-Chuan, C.; R.G. Dyson; PL. Powell (1998). An Empirical Study of the Impact of Information

Technology Intensity in Strategic Investment Decisions. Technology Analysis & Strategic Management (10:3), pp. 325-339.

Watson, R.T.; L.F. Pitt; C.B. Kavan (1998). Measuring Information Systems: Lessons from Two Longitudinal Case Studies. MIS Quarterly (22:1), pp. 61-79.

Wilkin, C.; B. Hewett; R. Carr (2004). Exploring the Role of Expectations in Defining Stakeholders’ Evaluations of IS Quality. En: Wim van Grembergen (Ed./ Information Systems Evaluation Management, pp. 231-243.

IRM Press. London, United Kingdom.

WITSA (World Information Technology and Services Alliance (2000). Digital Planet 2000: The Global Information Economy. Bases on Research Conducted by International Data Corporation (IDC), Published by WITSA.

Wixom, B.H.; H.J. Watson (2001). An Empirical Investigation of the Factors Affecting Data Warehousing Success. MIS Quarterly (25:1), pp. 17-41.

Yuthas, K.; S.T. Young (1998). Material Matters: Assessing the Effectiveness of Materials Management IS. Information & Management (33:3), pp. 115-124.